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Abstract. In this paper, we extend the rectangular side of the shuffle conjecture by stating a

rectangular analogue of the square paths conjecture. In addition, we describe a set of combina-
torial objects and one statistic that are a first step towards a rectangular extension of (the rise

version of) the Delta conjecture, and of (the rise version of) the Delta square conjecture, corre-

sponding to the case q = 1 of an expected general statement. We also prove our new rectangular
paths conjecture in the special case when the sides of the rectangle are coprime.

1. Introduction

In the 90’s, Garsia and Haiman set out to prove the Schur positivity of the (modified) Macdonald
polynomials by showing them to be the bi-graded Frobenius characteristic of certain Garsia-Haiman
modules [11]. Their prediction was confirmed in 2001, when Haiman used the algebraic geometry
of the Hilbert sheme to prove that the dimension of their modules equals n! [17], thus proving
the n! theorem. In the course of these developments, it became clear that there were remarkable
connections to be found between Macdonald polynomial theory and representation theory of the
symmetric group. For example, during their quest for Macdonald positivity, Garsia and Haiman
introduced the Sn-module of diagonal harmonics, i.e. the coinvariants of the diagonal action of Sn

on polynomials in two sets of n variables, and they conjectured that its Frobenius characteristic is
given by ∇en, where ∇ is the nabla operator on symmetric functions introduced in [2], which acts
diagonally on Macdonald polynomials. Haiman proved this conjecture in 2002 [18].

The combinatorial side of things solidified when Haglund, Haiman, Loehr, Remmel, and Ulyanov
then formulated the so called shuffle conjecture [14], i.e. they predicted a combinatorial formula
for ∇en in terms of labelled Dyck paths, which are lattice paths using North and East steps going
from (0, 0) to (n, n) and staying weakly above the line connecting these two points (called the main
diagonal). Several years later, Haglund, Morse and Zabrocki conjectured a compositional refinement
of the shuffle conjecture, which also specified all the points where the Dyck paths returns to main
diagonal [15]. This was the statement later proved by Carlsson and Mellit in [6], implying the
shuffle theorem.

Over the years, this subject has revealed itself to be extremely fruitful and to have striking connec-
tions to other fields of mathematics including elliptical Hall algebras, affine Hecke algebras, Springer
fibers, the homology of torus knots and the shuffle algebra of symmetric functions.

In this paper, we add a few (conjectural) formulas to the substantial list of variants and generalisa-
tions inspired by the the succes story of the shuffle Theorem; that is, equations with a symmetric
function related to Macdonald polynomials on one side and lattice paths combinatorics on the other.
Furthermore, we support one of these conjectures by proving a non-trivial special case.
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One of the earliest shuffle-like formulas was conjectured in 2007 Loehr and Warrington [21]. They
predicted an expression of ∇ω(pn) in terms of square paths, i.e. lattice paths from (0, 0) to (n, n)
using only North and East steps and ending with an East step (without a the restriction of staying
above the main diagonal). Their formula was proved by Sergel in [26] to be a consequence of the
shuffle theorem.

Next, Haglund, Remmel and Wilson formulated the Delta conjecture [16], a pair of conjectures for
the symmetric function ∆′

en−k−1
en in terms of decorated Dyck paths, where k decorations are placed

on either rises or valleys of the path. The symmetric function operator ∆′
f acts diagonally on the

Macdonald polynomials and generalises ∇, in a sense. The rise version of the Delta conjecture was
proved by D’Adderio and Mellit in [10], using the compositional refinement in [8]. In [7], the authors
stated a Delta square conjecture (still open at the moment), which extends (the rise version of) the
Delta conjecture in the same fashion as the square paths theorem extends the shuffle theorem. The
valley version also has similar extensions [20,24], but it lacks a compositional version and it is still
open.

Around the same time as the formulation of the Delta conjecture, the story has been extended
to rectangular Dyck paths: paths from (0, 0) to (m,n) staying above the main diagonal. In [3],
building on the work in [12], Bergeron, Garsia, Sergel, and Xin conjectured that a certain symmetric
function related to the elliptic Hall algebra studied by Schiffmann and Vasserot [25] can be expressed
in terms of rectangular Dyck paths. Their prediction was recently proved by Mellit [23].

In this paper, we state a rectangular analogue of the square paths conjecture, where the combina-
torial objects are lattice paths from (0, 0) to (m,n) ending with an East step. Our main result is
the proof the special case of our conjecture where the sides of the rectangle are coprime. More-
over, using the Theta operators (first introduced in [8]), we conjecture the special case q = 1 of a
rectangular analogue of (the rise version of) the Delta conjecture and the Delta square conjecture,
in terms of rectangular paths that lie above some horizontal translation of the broken diagonal, a
“decorated” analogue of the diagonal of the rectangle that turns out to be necessary to describe
the right set of combinatorial objects.

2. Symmetric functions

For all the undefined notations and the unproven identities, we refer to [9, Section 1], where defi-
nitions, proofs and/or references can be found.

We denote by Λ the graded algebra of symmetric functions with coefficients in Q(q, t), and by ⟨ , ⟩
the Hall scalar product on Λ, defined by declaring that the Schur functions form an orthonormal
basis.

The standard bases of the symmetric functions that will appear in our calculations are the monomial
{mλ}λ, complete {hλ}λ, elementary {eλ}λ, power {pλ}λ and Schur {sλ}λ bases.

For a partition µ ⊢ n, we denote by

H̃µ := H̃µ[X] = H̃µ[X; q, t] =
∑
λ⊢n

K̃λµ(q, t)sλ

the (modified) Macdonald polynomials, where

K̃λµ := K̃λµ(q, t) = Kλµ(q, 1/t)t
n(µ)
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Figure 1. Arm, leg, co-arm, and co-leg of a cell of a partition.

are the (modified) Kostka coefficients (see [13, Chapter 2] for more details).

Macdonald polynomials form a basis of the algebra of symmetric functions Λ. This is a modification
of the basis introduced by Macdonald [22].

If we identify the partition µ with its Ferrer diagram, i.e. with the collection of cells {(i, j) | 1 ≤
i ≤ µj , 1 ≤ j ≤ ℓ(µ)}, then for each cell c ∈ µ we refer to the arm, leg, co-arm and co-leg (denoted
respectively by aµ(c), lµ(c), a

′
µ(c), l

′
µ(c)) as the number of cells in µ that are strictly to the right,

below, to the left and above c in µ, respectively (see Figure 1).

Let M := (1− q)(1− t). For every partition µ, we define the following constants:

Bµ := Bµ(q, t) =
∑
c∈µ

qa
′
µ(c)tl

′
µ(c), Πµ := Πµ(q, t) =

∏
c∈µ/(1)

(1− qa
′
µ(c)tl

′
µ(c)).

We will make extensive use of the plethystic notation (cf. [13, Chapter 1]). We also need several
linear operators on Λ.

Definition 2.1 ([1, 3.11]). We define the linear operator ∇ : Λ → Λ on the eigenbasis of Macdonald
polynomials as

∇H̃µ = e|µ|[Bµ]H̃µ.

Definition 2.2. We define the linear operator Π : Λ → Λ on the eigenbasis of Macdonald polynomials
as

ΠH̃µ = ΠµH̃µ

where we conventionally set Π∅ := 1.

Definition 2.3. For f ∈ Λ, we define the linear operators ∆f ,∆
′
f : Λ → Λ on the eigenbasis of

Macdonald polynomials as

∆f H̃µ = f [Bµ]H̃µ, ∆′
f H̃µ = f [Bµ − 1]H̃µ.

Observe that on the vector space of homogeneous symmetric functions of degree n, denoted by Λ(n),
the operator ∇ equals ∆en .
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Definition 2.4 ([8, (28)]). For any symmetric function f ∈ Λ(n) we define the Theta operators on Λ
in the following way: for every F ∈ Λ(m) we set

ΘfF :=


0 if n ≥ 1 and m = 0
f · F if n = 0 and m = 0
Πf

[
X
M

]
Π−1F otherwise

,

and we extend by linearity the definition to any f, F ∈ Λ.

It is clear that Θf is linear. In addition, if f is homogeneous of degree k, then so is Θf :

ΘfΛ
(n) ⊆ Λ(n+k) for f ∈ Λ(k).

Finally, we need to refer to [3, Algorithm 4.1] (see also [4, Definition 1.1, Theorem 2.5]).

Definition 2.5. Let m,n > 0. Let a, b, c, d ∈ N such that a+ c = m, b+ d = n, ad− bc = gcd(m,n).
We recursively define Qm,n as an operator on Λ by

Qm,n =
1

M
(Qc,dQa,b −Qa,bQc,d) ,

with base cases
Q1,0 = D0 = id− (1− q)(1− t)∆e1 and Q0,1 = −e1

(where f is the multiplication by f).

Definition 2.6. For a coprime pair (a, b) and f ∈ Λ(d), we define Fa,b(f) as follows. Let

f =
∑
λ⊢d

cλ(q, t)

(
qt

qt− 1

)ℓ(λ)

hλ

[
1− qt

qt
X

]
.

Then, we define

Fa,b(f) :=
∑
λ⊢d

cλ(q, t)

ℓ(λ)∏
i=1

Qλia,λib(1).

For our convenience, we use the shorthands

em,n := Fa,b(ed), pm,n := Fa,b(pd)

where m = ad, n = bd, and gcd(a, b) = 1. Beware: e4,2 = F2,1(e2), but e42 = e4e2.

3. Combinatorial definitions

The objects we are concerned with are rectangular Dyck paths and rectangular paths. All the
following definitions are classical for rectangular Dyck paths [3] and new for rectangular paths.

3.1. Rectangular paths.

Definition 3.1. A rectangular path of size m× n is a lattice path composed of unit North and East
steps, going from (0, 0) to (m,n), and ending with an East step. A rectangular Dyck path is a
rectangular path that lies weakly above the diagonal my = nx (called main diagonal).

We denote the sets of rectangular paths and rectangular Dyck paths of size m×n as RP(m,n) and
RD(m,n), respectively.
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Figure 2. A 7× 9 rectangular path with its base diagonal and the main diagonal
(dashed).

Definition 3.2. For a m× n rectangular path π, let ai be the (signed) horizontal distance between
the starting point of the i-th North step and the main diagonal. We define the area word of the
path to be the sequence (a1, . . . , an). Set s := −min{ai | 1 ≤ i ≤ n}, which we call the shift of the
path. Note that s = 0 if π is a rectangular Dyck path, and s > 0 otherwise.

Definition 3.3. We call base diagonal the diagonal my = n(x− s), which is the lowest diagonal that
intersects the path.

Definition 3.4. The area of a rectangular path π is area(π) :=
∑n

i=1⌊ai + s⌋. This is the number of
whole squares that lie entirely between the path π and its base diagonal.

For example, the path in Figure 2 has area word(
0,−11

9
,−4

9
,
1

3
,−8

9
,−1

9
,
2

3
,−5

9
,
2

9

)
≈ (0, −1.22, −0.44, 0.33, −0.88, −0.11, 0.66, −0.55, 0.22).

Thus, its shift is 11
9 and its area is 5.

3.2. Decorated rectangular paths. In a similar fashion as the rise version of the Delta conjecture
[16] (which is now a theorem [5, 10]), we introduce the concept of decorated rises for rectangular
paths.

Definition 3.5. The rises of a rectangular path are the indices of the rows containing a North step
that immediately follows another North step. A decorated rectangular path is a rectangular path
with a given subset dr of its rises.

Definition 3.6. For a decorated rectangular path of size (m + k) × (n + k) with k decorated rises,
we define the broken diagonal to be the broken segment built as follows. Let (x1, y1) = (0, 0), then
for 1 ≤ i < n+ k, define

(xi+1, yi+1) =

{
(xi +

m
n , yi + 1) if i ̸∈ dr

(xi + 1, yi + 1) if i ∈ dr.
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Figure 3. A decorated rectangular Dyck path with its broken diagonal.

The broken diagonal is the broken segment joining (xi, yi) and (xi+1, yi+1) for all i, that is, the line
that starts at (0, 0) and the proceeds with slope n

m in rows not containing decorated rises, and with
slope 1 in rows that contain decorated rises.

Note that, if the path has no decorated rises, then the broken diagonal coincides with the main
diagonal.

Definition 3.7. We define a decorated rectangular Dyck path to be a decorated rectangular path that
lies weakly above the broken diagonal.

See Figure 3 for an example of such a path. We use a ∗ to mark the decorated rises.

The definitions of area word and area extend to decorated paths as well, using the broken diagonal
in place of the main diagonal.

Definition 3.8. For a (m + k) × (n + k) decorated rectangular path (π, dr) with k decorated rises,
let ai be the horizontal distance between the starting point of the i-th North step and the broken
diagonal. We define the area word of the path as the sequence a1, . . . , an+k. We define s :=
−min{ai | 1 ≤ i ≤ n+ k} to be the shift of the path.

Definition 3.9. We define the area of a decorated rectangular path π as

area(π) :=
∑
i̸∈dr

⌊ai + s⌋.

The area of the path in Figure 3 is equal to 3.

3.3. Labelled paths. Finally, we need to introduce labelled objects.

Definition 3.10. A labelling of a (decorated) rectangular (Dyck) path is an assignment of a positive
integer label to each North step of the path, such that consecutive North steps are assigned strictly
increasing labels. A labelled (decorated) rectangular (Dyck) path is a (decorated) rectangular (Dyck)
path together with a labelling.
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Figure 4. A 7 × 9 labelled rectangular path (left) and labelled decorated Dyck
path (right).

We say that a labelling is standard if the set of labels is [n] := {1, . . . , n}, where n is the height of
the path.

We denote by wi the label assigned to the i-th North step of the path.

We also denote the sets of labelled rectangular paths and labelled rectangular Dyck paths of size
m × n as LRP(m,n) and LRD(m,n) respectively, and the sets of labelled decorated rectangular
paths and labelled decorated rectangular Dyck paths of size (m + k) × (n + k) with k decorated
rises as LRP(m+ k, n+ k)∗k and LRD(m+ k, n+ k)∗k, respectively.

Definition 3.11. Given a labelled (decorated) rectangular (Dyck) path (π, dr, w), we define xw =∏
i xwi

. With an abuse of notation, we will sometimes write π to mean (π, dr, w), in which case we
will have xπ = xw.

Given a rectangular (Dyck) path π, the cells in the rectangular grid going from (0, 0) to (m,n) that
lie above the path form the Ferrer’s diagram of a partition µ(π).

Here we extend the definition of dinv given in [3] (see also [23]) for rectangular Dyck paths to any
rectangular path. We will describe it in two different ways.

Definition 3.12. Let π be a m × n rectangular path, and let 1 ≤ i, j ≤ n. We say that i attacks j
in π (or (i, j) is an attack relation for π) if

(ai, i) <lex (aj , j) <lex (ai +
m
n , i).

At this point, we can define the dinv of an unlabelled path.

Definition 3.13. We define the path dinv of a rectangular path π as

pdinv(π) := #
{
c ∈ µ(π) | a

ℓ+1 ≤ m
n < a+1

ℓ

}
where a = aµ(c) and ℓ = ℓµ(c), and the second inequality always holds if ℓ = 0.

For labelled paths, we need some extra steps.
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Definition 3.14. We define the temporary dinv of a labelled rectangular path (π,w) as

tdinv(π) := #{1 ≤ i, j ≤ n | wi < wj and i attacks j}.

Definition 3.15. We define the maximal temporary dinv of a rectangular path π as

maxtdinv(π) := #{1 ≤ i, j ≤ n | i attacks j}.

Note that this is the same as max{tdinv(π,w) | w ∈ W (π)}, where W (π) is the set of all possible
labellings of π.

The following is a simpler description for the difference pdinv(π)−maxtdinv(π), given in [19].

Definition 3.16. We define the dinv correction of a rectangular path π as

cdinv(π) := #
{
c ∈ µ(π) | a+1

ℓ+1 ≤ m
n < a

ℓ

}
−#

{
c ∈ µ(π) | a

ℓ ≤ m
n < a+1

ℓ+1

}
,

where a = aµ(c) and ℓ = ℓµ(c).

We will provide a visual interpretation for the tdinv and cdinv later in the section.

Theorem 3.17 ([19, Theorem 2]). For any rectangular Dyck path π, we have

cdinv(π) = pdinv(π)−maxtdinv(π).

We extend this result to all rectangular paths, without the restriction of lying above the main
diagonal.

Theorem 3.18. For any rectangular path π, we have

cdinv(π) = pdinv(π)−maxtdinv(π)−#{i | ai(π) < 0} −#
{
i | ai(π) < −m

n

}
.

Proof. Let π′ be the path obtained from π by adding n North steps at the beginning, and m East
steps at the end. By construction, µ(π′) = µ(π) and the slope is the same, so cdinv(π′) = cdinv(π).
By Theorem 3.17, this quantity is also equal to pdinv(π′)−maxtdinv(π′). But again, pdinv(π) only
depends on µ(π), so pdinv(π′) = pdinv(π).

We only need to compare maxtdinv(π) and maxtdinv(π′). It is immediate that (i, j) is an attack
relation in π if and only if (n+ i, n+ j) is an attack relation in π′, so we only need to count attack
relations in π′ where either i ≤ n or j ≤ n. Since the first n steps of π′ are all North steps by
construction, we cannot possibly have attack relations where both i and j are at most n.

We have that, whenever ai(π) < 0 (i.e. the corresponding North step begins strictly below the main
diagonal), n + i is attacked exactly once in π′ by some j ≤ n. In fact, we have 0 ≤ an+i(π

′) =
m + ai(π) < m, and since aj(π

′) = m
n (j − 1) for j ≤ n, there exists exactly one j such that

m
n (j − 1) ≤ an+i(π

′) < m
n j (which is exactly the attack relation, as j < n+ i).

For the same reason, whenever ai(π) < −m
n (i.e. the corresponding North step ends strictly below

the main diagonal), n + i attacks exactly one j ≤ n in π′. In fact, if that is the case, we have
an+i(π

′) = m + ai(π) ≤ m
n (n − 1), so there exists exactly one j such that an+i(π

′) < m
n (j − 1) ≤

an+i(π
′) + m

n j (which is exactly the attack relation, as n+ i > j).
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Summarising, we have

cdinv(π) = cdinv(π′)

= pdinv(π′)−maxtdinv(π′)

= pdinv(π)−maxtdinv(π′)

= pdinv(π)−maxtdinv(π)−#{i | ai(π) < 0} −#
{
i | ai(π) < −m

n

}
as desired. □

Note that the term #{i | ai(π) < 0} counts the number of North steps of the path that begin
below the main diagonal, in the same fashion as in the tertiary dinv (or bonus dinv) for square
paths [21,26]. To obtain a unified definition of dinv of rectangular paths that matches the expected
symmetric functions, it turns out that we have to keep that term and disregard the term #{i |
ai(π) < −m

n }. This finally leads us to the following definition.

Definition 3.19. We define the dinv of a labelled rectangular path (π,w) as

dinv(π,w) := tdinv(π,w) + cdinv(π) + #{i | ai(π) < 0}.

We now give a visual interpretation of the various summands.

The temporary dinv counts all pairs of North steps (i, j) such that wi < wj and the j-th North
step begins between the line y = n

m (x + ai) and the line y = n
m (x + ai) + 1, with ties broken by

comparing i and j. In Figure 5, we have drawn these two lines for all North steps of the path and
marked the beginnings of North steps contained between them and that satisfy the condition on
the label. We see that the contribution to the dinv is 4.

The dinv correction is split into two parts. The first summand counts the number of cells c above
the path such that the two lines parallel to the main diagonal and starting from the endpoints of
the East step below c both intersect the North step to the right of c (bottom endpoint excluded,
but top endpoint included). The second summand counts the number of cells c above the path such
that the two lines parallel to the main diagonal and starting from the endpoints of the North step
to the right of c both intersect the East step below c (right endpoint included, but left endpoint
excluded). Notice that the two sets cannot simultaneously be non-empty, the first one being empty
if m ≤ n and the second one being empty if m ≥ n. In Figure 5, we have a path of size 5× 7 so the
second term is 0. We have greyed out the cells counted in the third term, giving a contribution to
the dinv of −4.

The bonus dinv, as previously mentioned, counts the number of North steps of the path that begin
below the main diagonal. In Figure 5 there are 3 North steps starting below the main diagonal.

Thus the path in Figure 5 has dinv equal to 3.

4. Conjectures

With the previous definitions in mind, we can state the rectangular shuffle theorem [23] and several
new conjectures, which were verified by computer for all paths with semiperimeter m+n up to 13.

Theorem 4.1. [23] For any m,n ∈ N, we have

em,n =
∑

π∈LRD(m,n)

qdinv(π)tarea(π)xπ.
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Figure 5. Calculation of the dinv of a rectangular square path.
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Figure 6. The set of 2× 3 standard rectangular paths, with their dinv (in blue)
and area (in red).

Conjecturally, we extend this result to rectangular paths, as follows.

Conjecture 4.2. For any m,n ∈ N, and d = gcd(m,n), we have

[m]q
[d]q

pm,n =
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ.

Example 4.3. Let m = 2 and n = 3. In Conjecture 4.2, we can check for example that the Hilbert
series (that is, the scalar product with h1n) coincides with the sum over all 2×3 standard rectangular
paths of the monomial qdinv(π)tarea(π). In fact, we have

[2]q
[1]q

⟨p2,3, h13⟩ = (1 + q)(q + t+ 2) = 1 + q + 1 + t+ q + q2 + q + qt,

which coincides with the values in Figure 6.

We also have (univariate) analogues of the Delta conjecture and the Delta square conjecture for
rectangular (Dyck) paths, using Theta operators.

Conjecture 4.4. For any m,n ∈ N, we have

Θekem,n|q=1 =
∑

π∈LRD(m+k,n+k)∗k

tarea(π)xπ.
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Figure 7. The set of 3× 4 standard rectangular Dyck paths with two decorated
rises, with their area.

Conjecture 4.5. For any m,n ∈ N, and d = gcd(m,n), we have

[m+ k]q
[d]q

Θekpm,n

∣∣∣∣
q=1

=
∑

π∈LRP(m+k,n+k)∗k

tarea(π)xπ.

Conjectures 4.4 and 4.5 have been checked by computer up to semiperimeter 13. See Figure 7 for
the case m = 1, n = 2, k = 2: indeed

⟨Θe2e2,1, h14⟩|q=1 = t2 + 5t+ 11,

which coincides with the combinatorial expression.

These conjectures bring with themselves a natural open problem.

Problem 4.6. Find a statistic qstat : LRP(m+ k, n+ k)∗k → N such that

Θekem,n =
∑

π∈LRD(m+k,n+k)∗k

qqstat(π)tarea(π)xπ

and
[m+ k]q

[d]q
Θekpm,n =

∑
π∈LRP(m+k,n+k)∗k

qqstat(π)tarea(π)xπ.

Unlike in the square case, simply ignoring the decorations on the rises to compute the dinv does
not give the expected qstat.
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5. The sweep process

In this section, we show that the sweep process in [23, Subsection 4.1] also gives the correct outcome
for rectangular paths, without the restriction of staying above the main diagonal.

We refer to [23, Proposition 3.3] for the definitions of the operators d+ and d−, to [23, Subsection 3.5]
for the definition of characteristic function of a Dyck path with a marking, and to [23, Section 4] and
the first paragraph of [23, Theorem 4.2] for how they relate to the following sweep process. We do
not report all the definitions here because we are only interested in certain combinatorial properties
of the sweep process and how they change between rectangular Dyck paths and rectangular paths,
rather than in the process itself, but we encourage the interested reader to compare Theorem 5.2
and [23, Theorem 4.2].

Definition 5.1 (Sweep process). For π ∈ RP(m,n), define sweep(π) through the algorithm that
follows. Initialize φ = 1 ∈ V0. Consider a line l with slope n

m − ϵ, with ϵ < 1
(2mn)2 (so that it

“breaks ties” but does not change the order in which the lattice points are hit with respect to a
line with slope m

n ), which stays fully above π. Move l downward and modify φ every time l passes
through a lattice point p weakly below π and different from (m,n). At each lattice point p, modify
φ as follows:

(A) if p is between a NE pair of steps, apply d+;
(B) if p is between an EN pair of steps, or p = (0, 0) and the path starts with a N step, apply

d−;

(C) if p is between a NN pair of steps, apply q−a d−d+−d+d−
q−1 , where a is the number of vertical

steps of π crossed by l to the right of p;
(D) if p is between an EE pair of steps, or p = (0, 0) and the path starts with an E step, multiply

by qa (where a is defined as in the previous case);
(E) if p is strictly below π, multiply by t.

The algorithm stops when l is entirely below the path π.

See Figure 8 for an illustration of the sweeping process.

Theorem 5.2. For π any rectangular path, we have

sweep(π) = tarea(π)
∑

w∈W (π)

qdinv(π,w)xw,

where W (π) is the set of possible labellings of π.

Proof. As in [23, Theorem 4.2], plotting the attack relations gives a Dyck path π̃ with a set of
marked corners Σπ such that

χ(π̃,Σπ) =
∑

w∈W (π)

qtdinv(π,w)xw,

where χ(π̃,Σπ) is the characteristic function of a Dyck path (see [23, Subsection 3.5]) and such that
χ(π̃,Σπ) is the result of the operations (A), (B), and (C) without the factor q−a.

It is also clear that operation (E) gives tarea(π), so all that is left to show is that the power of q
produced by rules (C) and (D) equals

+#
{
c ∈ µ(π) | a+1

ℓ+1 ≤ m
n < a

ℓ

}
−#

{
c ∈ µ(π) | a

ℓ ≤ m
n < a+1

ℓ+1

}
+#{i | ai < 0}.
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l
↓

Figure 8. The sweeping process.

Let us again define π′ to be the path obtained from π by adding n North steps at the beginning,
and m East steps at the end. Since π′ is a rectangular Dyck path, by the proof of [23, Theorem 4.2]
we know that the power of q produced by rules (C) and (D) equals cdinv(π′), which is also equal
to cdinv(π) as it only depends on µ(π′) = µ(π).

We need to compare the power of q produced by rules (C) and (D) applied to π′ and π. The result
is the same for lattice points in between steps of π′ that were already in π, as we are not adding
any North step to their right. For the lattice points in between the last m East steps of π′, the
exponent of q is always 0, as their corresponding value of a is 0.

For the lattice points in between first n steps of π′, we have to apply rule (C), so their total
contribution is equal to minus the number of North steps of π′ intersected by any line with slope
n
m − ε starting from (0, j) for some j < n which is exactly the number of North steps of π finishing
strictly below the main diagonal, that is, the number of i such that ai(π) < −m

n .

Finally, the point (0, n) in π switches from rule (D) to rule (A), or from rule (B) to rule (C),
depending whether π starts with an East or a North step respectively; in either case, the difference
between its contributions in π′ and in π is given by minus the number of North steps of π that are
crossed by the line with slope n

m − ε starting from (0, 0), which is exactly the number of i such that
−m

n ≤ ai(π) < 0.

In total, we get that the difference in the exponents of q produced by rules (C) and (D) applied to
π′ and π is −#{i | ai(π) < 0}, so we have

sweep(π) = tarea(π)qcdinv(π)q#{i|ai(π)<0}
∑

w∈W (π)

qtdinv(π,w)xw = tarea(π)
∑

w∈W (π)

qdinv(π,w)xw

as desired. □



RECTANGULAR PATHS AND DELTA CONJECTURES 15

6. The coprime case

In this section, we prove Conjecture 4.2 in the coprime case:

Theorem 6.1. If gcd(m,n) = 1, then

[m]q pm,n =
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ.

Proof. Since gcd(m,n) = 1, we have em,n = pm,n = Fm,n(e1). Therefore, in order to prove
Theorem 6.1, it is enough to show that the set of (unlabelled) rectangular paths RP(m,n) can be
partitioned into subsets P1, . . . ,Ph of cardinality m such that:

(1) each Pi contains exactly one Dyck path π0 ∈ RD(m,n);
(2) for each Pi and 0 ≤ k < m, there exists a (unique) element πk ∈ Pi such that sweep(πk) =

qksweep(π0).

Indeed, if such a partition exists, then

[m]q pm,n = [m]q em,n = [m]q
∑

π∈LRD(m,n)

qdinv(π)tarea(π)xπ

= [m]q
∑

π∈RD(m,n)

sweep(π)

=
∑

π∈RP(m,n)

sweep(π)

=
∑

π∈LRP(m,n)

qdinv(π)tarea(π)xπ,

where we used Theorem 4.1 in the first line, Theorem 5.2 in the second line, the partition RP(m,n) =
P1 ⊔ · · · ⊔ Ph in the third line, and Theorem 5.2 again in the fourth line.

Next, we construct a partition of RP(m,n) with the desired properties. Consider an (unlabelled)
rectangular path π ∈ RP(m,n). Denote by di ∈ Q the signed horizontal distance between the
endpoint of the i-th horizontal step of π and the main diagonal (for 0 ≤ i < k). Fix now an integer
k with 0 ≤ k < m. The k-th horizontal step divides the path π into two parts π0 and π1, where π1

starts immediately after the k-th horizontal step and π0 ends with the k-th horizontal step. Define
the path ϕ(π) = ϕk(π) as the concatenation of π1 followed by π0 (we fix ϕ0 = id). Also, let

r(π) = rk(π) =

{
# {i | dk > di ≥ 0} if dk ≥ 0

−# {i | 0 ≥ di > dk} if dk < 0,

that is, up to a sign, the number of horizontal steps whose endpoint lies between the main diagonal
and the diagonal parallel to it that passes through the endpoint of the k-th horizontal step.

We partition RP(m,n) as follows. If π ∈ RD(m,n) is the i-th Dyck path, define Pi = {ϕk(π) | 0 ≤
k < m}. The sets P1, . . . ,Ph form a partition of RP(m,n). Since gcd(m,n) = 1, Pi contains no
Dyck path other than π, so the partition satisfies property (1) above. By definition of rk, we have
that {rk(π) | 0 ≤ k < m} = {0, 1, . . . ,m − 1}. See Figure 9 for an example. Then the partition
satisfies property (2) thanks to Lemma 6.2 below. □
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2

4 1

3 0

π = ϕ0(π) : dinv = 7

ϕ3(π) : dinv = 8 ϕ1(π) : dinv = 9 ϕ4(π) : dinv = 10 ϕ2(π) : dinv = 11

Figure 9. A rectangular Dyck path π and ϕk(π) for all 0 ≤ k < m. The horizontal
steps of π are marked by integers indicating their order with respect to the distance
between their endpoint and the main diagonal.

Lemma 6.2. If gcd(m,n) = 1, then sweep(ϕk(π)) = qrk(π)sweep(π).

Proof. The relative order of points in π and their images in ϕ(π) does not change when performing
the sweep process. Therefore,

sweep(ϕ(π))

qa(ϕ(π))
=

sweep(π)

qa(π)
,

where a(π) is the exponent of q obtained by applying the sweep process. To conclude, we need to
show that a(ϕ(π)) = a(π) + r(π).

Define Aπ, Bπ, Cπ, Dπ as the sets of lattice points of π, different from the point (m,n), that are
between a NE, EN , NN , EE pair of steps respectively. We consider the point (0, 0) to be preceded
by a virtual East step, so (0, 0) ∈ Bπ or (0, 0) ∈ Dπ if the first step is a North or an East step
respectively.

Let p be a lattice point of π. Define a(p) ∈ Z as the number of vertical steps that intersect the ray
ρ(p) := {p+ t · (m,n) | t ∈ R+}, multiplied by the following coefficient ϵ(p):

ϵ(p) =


0 if p ∈ Aπ ∪Bπ

−1 if p ∈ Cπ

1 if p ∈ Dπ.

By construction, we have that a(π) =
∑

p∈π aπ(p).
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For a lattice point p of π, denote by l = l(p) ∈ {0, 1} the index such that p is a point of πl. For
this purpose, the right endpoint of the k-th horizontal step is considered as a lattice point of π1

(not π0), whereas (m,n) is not considered as a lattice point of π1 (or of π). Define a′(p) ∈ Z as the
number of vertical steps of π1−l that intersect the line λ(p) := {p+ t · (m,n) | t ∈ R}, multiplied by
the following coefficient ϵ′(p):

ϵ′(p) =


0 if p ∈ Aπ ∪Bπ

(−1)l if p ∈ Cπ

(−1)l+1 if p ∈ Dπ.

In other words: a′(p) vanishes if p ∈ Aπ∪Bπ; otherwise, |a′(p)| is equal to the number of intersections
between the line λ(p) and vertical steps in the part of the path not containing p.

Claim 1: a(ϕ(π))− a(π) =
∑
p∈π

a′(p).

The intersections between rays ρ(p) = {p+t ·(m,n) | t ∈ R+} and vertical steps in πl(p) are counted
in both a(ϕ(π)) and a(π) (with the same sign), so they simplify.

The remaining summands in a(ϕ(π)) count the intersections between rays ρ(p), where p is in π1, and
vertical steps in π0 (where π0 is translated by (m,n) so that it starts from (m,n)). Equivalently,
they count the intersections between lines λ(p) (where p is in π1) and vertical steps in π0 (not
translated). Therefore, their contribution is given by

∑
p∈π1

a′(p). Note that the points in Cπ get

a negative sign, as in the definition of aπ(p).

The remaining summands in a(π) count the intersections between rays ρ(p), where p is in π0, and
vertical steps in π1. Since π1 comes after π0, we can substitute the rays ρ(p) with the lines λ(p).
Their contribution is given by

∑
p∈π0

a′(p).

Intermezzo: We refer to a maximal sequence of consecutive North steps as a vertical segment. Each
point in Dπ (i.e., between two East steps) is considered as a vertical segment of length 0. This way,
the path π0 has k vertical segments with x coordinates equal to 0, . . . , k − 1, and the path π1 has
m− k vertical segments with x coordinates k, . . . ,m− 1. Denote by Si the i-th vertical segment.

It is convenient to translate each vertical segment Si along the line {t · (m,n) | t ∈ R} so that its x
coordinate becomes 0. We denote this translated segment by Ti. Let yi and y′i be the y coordinates
of the endpoints of Ti, with yi ≤ y′i. Therefore, the y coordinates of Si are yi + i · n

m and y′i + i · n
m .

Note that the endpoints of the Ti’s are all distinct because m and n are coprime.

Claim 2:
∑
p∈π

a′(p) =
∑
i<k

∑
j≥k

(δTi⊃Tj
− δTi⊂Tj

).

Let us analyze the contributions to the left hand side due to the i-th and j-th vertical segments,
for fixed i < k and j ≥ k. Let h be the number of integral points p ∈ Si (including the endpoints
of Si) such that λ(p) intersects the j-th vertical segment Sj .

If Ti ⊃ Tj , then Sj has length h and, for all its h+1 points p′, the line λ(p′) intersects Si. Once we
exclude the endpoints, h− 1 points remain. On the other hand, the endpoints of Si are not among
the h points p ∈ Si such that λ(p) intersects Sj . The overall contribution of Si and Sj to the left
hand side is h− (h− 1) = +1.
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Note that if Ti ⊃ Tj and h = 0, then Sj is a single point p′ ∈ Dπ such that λ(p′) intersects Si, so
it contributes to the left hand side as +1. In other words, vertical segments of length 0 can still be
regarded as having h− 1 = −1 integral points other than the endpoints.

Similarly, if Ti ⊂ Tj , then the contribution is −1. Finally, if neither of Ti and Tj contains the other,
Sj also has h points p′ such that λ(p′) intersects Si, so the contribution is 0.

Claim 3: δTi⊃Tj
− δTi⊂Tj

= δyi<yj
− δyi+1<yj+1

(where we set ym = 0).

Clearly, we have δTi⊃Tj
−δTi⊂Tj

= δyi<yj
−δy′

i<y′
j
. The top endpoint of Si has the same y coordinate

as the bottom endpoint of Si+1, so y′i = yi+1+
n
m . Similarly, y′j = yj+1+

n
m , so δy′

i<y′
j
= δyi+1<yj+1

.

Claim 4:
∑
i<k

∑
j≥k

(δyi<yj
− δyi+1<yj+1

) = r(π).

Write δi,j as a shorthand for δyi<yj
. The left hand side simplifies to∑

k≤j<m

δ0,j +
∑

0<i<k

δi,k −
∑

k<j≤m

δk,j −
∑

0<i<k

δi,m = 1 +
∑

0≤i<m

(δ0,i + δi,k − 1), (1)

where we have used the facts that ym = y0 = 0 and δi,j = 1− δj,i for i ̸= j.

If yk > 0, the final summation in (1) counts the horizontal steps of π whose right endpoint lies
strictly between the main diagonal and the translated diagonal {yk + t · (m,n) | t ∈ R}. The +1
term can be interpreted as counting the final horizontal step which ends on the main diagonal.

If yk < 0, the final summation in (1) counts the same points with negative sign, but also has a −2
coming from the terms i = 0 and i = k (because δ0,k = 0). Then −2 + 1 = −1 counts the final
horizontal step with negative sign. In all cases, the result is exactly r(π). □

This completes the proof of Theorem 6.1.
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Pures et Appliquées 104 (September 2015), no. 3, 403–435 (en).

[13] James Haglund, The q,t-Catalan numbers and the space of diagonal harmonics, University Lecture Series, vol. 41,
American Mathematical Society, Providence, RI, 2008. With an appendix on the combinatorics of Macdonald

polynomials. MR2371044

[14] James Haglund, Mark Haiman, Nicholas Loehr, Jeffrey B. Remmel, and Anatoly Ulyanov, A combinatorial
formula for the character of the diagonal coinvariants, Duke Math J 126 (2005), no. 2, 195–232. MR2115257

[15] James Haglund, Jennifer Morse, and Mike Zabrocki, A Compositional Shuffle Conjecture Specifying Touch

Points of the Dyck Path, Canadian J Math 64 (2012), no. 4, 822–844. MR2957232
[16] James Haglund, Jeffrey B. Remmel, and Andrew T. Wilson, The Delta Conjecture, Trans. Amer. Math. Soc.

370 (2018), no. 6, 4029–4057. MR3811519
[17] Mark Haiman, Hilbert schemes, polygraphs and the Macdonald positivity conjecture, J. Amer. Math. Soc. 14

(2001), no. 4, 941–1006. MR1839919

[18] , Vanishing theorems and character formulas for the Hilbert scheme of points in the plane, Invent Math
149 (2002), no. 2, 371–407. MR1918676

[19] Angela Hicks and Emily Sergel, A simpler formula for the number of diagonal inversions of an (m,n)-parking

function and a returning fermionic formula, Discrete Mathematics 338 (March 2015), no. 3, 48–65 (en).
[20] Alessandro Iraci and Anna Vanden Wyngaerd, A Valley Version of the Delta Square Conjecture, Ann Comb 25

(March 2021), no. 1, 195–227 (en).

[21] Nicholas A. Loehr and Gregory S. Warrington, Square q, t-lattice paths and ∇(pn), Trans. Amer. Math. Soc.
359 (2007), no. 2, 649–669. MR2255191

[22] Ian G. Macdonald, Symmetric functions and Hall polynomials, Second, Oxford Mathematical Monographs, The

Clarendon Press, Oxford University Press, New York, 1995. With contributions by A. Zelevinsky, Oxford Science
Publications. MR1354144

[23] Anton Mellit, Toric braids and (m,n)-parking functions, Duke Mathematical Journal 1 (2021), no. 1, 1–47.
[24] Dun Qiu and Andrew Timothy Wilson, The valley version of the Extended Delta Conjecture, J. Combin. Theory

Ser. A 175 (2020), 105271.

[25] Olivier Schiffmann and Eric Vasserot, The elliptic Hall algebra, Cherednik Hecke algebras and Macdonald poly-
nomials., Compos. Math. 147 (2011), no. 1, 188–234 (English).

[26] Emily Sergel, A proof of the Square Paths Conjecture, J. Combin. Theory Ser. A 152 (2017), 363–379.

MR3682738

Alessandro Iraci
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